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Abstract

A graph G = (V,E) is said to be arbitrarily partitionable if for any sequence (n1, . . . , nk) of
positive integers, whose sum is equal to |V |, we can find k disjoint subsets of V , V1, . . . , Vk, such that
each Vi induces a connected subgraph of size ni. Some families of graphs are known to be arbitrarily
partitionable, but determining whether a given graph is arbitrarily partitionable is, in general, tough.
We review the main results which have been found so far about this notion.

1 Introduction

Let G = (V,E) be a simple, finite, connected and undirected graph of order n. A sequence τ =
(n1, . . . , nk) of positive integers is said admissible for G if it sums up to n. If for such an admissible
sequence τ we can find a partition (V1, . . . , Vk) of V such that each Vi induces a connected subgraph of
order ni , then τ is said to be realizable in G and the partition (V1, . . . , Vk) is a realization of τ in G. G
is said to be arbitrarily partitionable (AP for short) if every of its admissible sequences can be realized
in it.

The notion of AP graphs is mainly linked to the following computer science problem: let us consider
a network of connected computing resources, and suppose that there are k different users needing respec-
tively n1, . . . , nk elements of these. In order to optimize the computing power attributed to each user, a
resource must be assigned to exactly one of them, and the set of the resources given to a user must be
connected. Thus, the most interesting networks for this problem are these which can be distributed this
way to users for any sequence of their needs. According to the definition of arbitrarily partitionabilty
given above, these are networks which have an AP graph topology.

Arbitrarily partitionability is a quite recent concept first introduced by Barth et al. [3] in 20021. But
the problem of partitioning graphs into connected components had been actually studied several times
before. For example, in 1975, at the combinatorial colloquium in Aberdeen, A. Frank raised the following
conjecture: given a k-connected graph G = (V,E), k positive integers n1, . . . , nk adding up to |V |, and
k distinct vertices v1, . . . , vk of G, can V be always partitioned into k subsets V1, . . . , Vk such that each
Vi is of size ni and contains the vertex vi? This conjecture, which has been proved independently by
Lovász [6] and Győri [4], is quite similar to the notion of arbitrarily partitionability.

Apart from the network context presented above, arbitrarily partitionability revealed itself to be
very close-related to some other notions of graph theory. For example, in an AP graph G the sequence
(2, . . . , 2) (resp. (1, 2, . . . , 2) if its order is odd) can always be realized, and its easy to see that any
realization of it in G forms a perfect matching (resp. a quasi-perfect matching). It follows that all AP
graphs possess a perfect matching (resp. a quasi-perfect matching). Another noteworthy example is
based of the fact that a path is always AP, and thus that a traceable2 graph is always AP too. Hence,
arbitrarily partitionability can be considered as a generalization of hamiltonism [7], a field we still do
not know much about.

Determining whether a graph is AP is tough, even for the family of trees: to prove that a graph
G is AP, it must be shown that every of its admissible sequences is realizable in it. This becomes
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quickly unhandleable: not only the problem of determining whether a sequence is realizable in a graph
is NP-complete [10], but also the number of such sequences to check is exponential3.

We review the main results of the investigations which have been carried out so far, whose goals were,
mainly, both to find some structural conditions implying the arbitrarily partitionability of graphs and
to provide some techniques to easily product a large number of AP graphs.

2 Constrained versions of arbitrarily partitionability

The definition of arbitrarily partitionability presented above is quite lax and does not take heed of the
difficulties we can encounter when trying to distribute a given network to some users. Hence, some
constrained versions of this notion have been introduced [8] in order to be more representative of these
aspects.

2.1 On-line version

One thing which makes a sequence τ easier to realize in a graph G, is that it is entirely known beforehand.
Indeed, in this situation, one can analyse the topology of G and thus try to guess where some parts of
τ must be placed. This does not appear natural considering the network context presented before, in
which the different needs can arrive at different moments.

Hence, we define a new version of AP graphs based on the fact that the parts of a sequence must
be placed consecutively, following a certain order. An on-line arbitrarily partitionable graph (OL-AP for
short) is a graph in which we can realize any of its admissible sequences by placing its parts following
their order. Obviously, a graph G = (V,E) is OL-AP if for any integer j between 1 and |V | we can find
a subset of V , Vj , which induces a connected subgraph of size j such that the rest of the graph, induced
by the vertices of V − Vj , is OL-AP.

OL-AP trees have been fully characterized: a tree T is OL-AP if and only if it is a path or a 3-
pode4 having its arms of certain lengths. A class of non-tree and non-traceable graphs has also been
characterized: a sun5 is OL-AP if and only if it has less than five rays, and if its values belong to some
determined ones.

2.2 Recursive versions

The definition of AP graphs given in section 1 is quite static, especially when we consider the context of
subnetworks attribution. When we perform the distribution of a network, we only make sure that the
given resources satisfy the constraints of size and connexity. But what if a user wants, for some reasons,
to subdivide his resources again? This will only be possible if the subnetwork we assigned him has an
AP graph topology itself.

From this point, a recursive version of the arbitrarily partitionability has been studied: a graph is
recursively arbitrarily partitionable (R-AP for short) if it is AP with the particularity that any of its
admissible sequences can be realized in such a way that the parts induce R-AP subgraphs.

R-AP graphs are quite similar to OL-AP graphs (see section 2.4); hence, trees and suns which are
R-AP are nearly the same as the ones which are OL-AP. A class of 2-connected graphs, named balloons6,
has also been studied: R-AP balloons were first thought to have at most six branches [8], but it has been
recently shown that there exists some R-AP balloons with an arbitrary number of branches [1].

Note that a stronger definition of the recursively arbitrarily partitionability has been defined: a graph
is strongly recursively arbitrarily partitionable (SR-AP for short) if it is R-AP with the particularity that
every realization of its admissible sequences implies SR-AP subgraphs. SR-AP graphs have been well

3The number of different partitions of an integer n is of order Ω(e
√
n).

4A k-pode P(a1, . . . , ak) is a tree consisting of a primary node connected to k disjoint paths, called arms, whose orders
are respectively a1, . . . , ak.

5A sun S = (r1, . . . , rk) with k rays is a cycle of n = k +
∑k

i=1 ri vertices v1, . . . , vn having its nodes vj connected to

a degree one vertex, where j = 1 + l +
∑l

i=1 ri for every l between 1 and k.
6A balloon B = (b1, . . . , bk) of k branches is a graph having two distinct vertices linked by k disjoint paths of size b1,

. . . , bk.
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characterized: a graph is SR-AP if and only if it does not contain two particular patterns as induced
subgraph: the claw7 and the net8.

2.3 With imposed vertices version

In the description of AP graphs, there are no constraints on the parts in which the vertices of the graphs
must be placed: we are free to put the vertices in the parts we want as soon as the resulting realization
is correct. But, we could like, for some reasons, to have some given vertices in some given parts. This
could be the case when, in the network context, a computing resource is the only one having a particular
function. Thus, a user could absolutely want to have it in his own subnetwork.

Directly resulting from this problem, a graph G is said to be arbitrarily partitionable with k imposed
vertices (AP+k for short) if for any sequence τ = (n1, . . . , nm) admissible for G and k of its nodes
v1, . . . , vk, associated to an integer between 1 and m by a function ρ, we can find a realization V1, . . . , Vm
of τ in G in such a way that each vi lies in the part Vρ(vi).

This version of arbitrarily partitionability has not been introduced in any publication yet, but fixing
some vertices into some parts appears to be a good way to simplify some proofs.

2.4 AP versions hierarchy

It has been shown that all these definitions induce the following hierarchy :

PM9 ) AP ) OL-AP ) R-AP ) Traceable ) SR-AP

Thus, all these versions become quite useful to prove that a given graph G is AP: if one can show that
G is ”more” than AP (i.e. AP with some more constraints), then it is obviously AP. Note that the place
of the brand new AP+k version in this hierarchy is still unknown, even for k = 1.

3 Arbitrarily partitionability of trees

An obvious reason for studying the arbitrarily partitionability of trees is that the absence of cycles in
their structure restricts the ways of realizing sequences in them. But what is more interesting is that
the property of being AP is closed under edge addition: graphs resulting from some edge additions in
an AP graph are AP too. Said differently, if a graph has an AP spanner10, then so it is. As a result,
adding edges in AP trees seemed to be an easy method for generating far more AP graphs.

The majority of the investigations on AP trees intended to characterize their maximum degree ∆,
parameter which appeared to be the most natural to consider at first glance. It looks evident that any
tree T with ∆(T ) ≤ 2 is a path, and thus is AP. There also exists some trees which are AP and of
maximum degree three: one can easily check that the 3-pode T (1, 1, 2) is AP. Therefore, the maximum
degree of AP trees is at least three.

In 2003, Horňák and Woźniak proved that AP trees are of maximum degree at most six [5]. The
main problem of their proof is its non-constructiveness; in particular, it does not assure the existence of
AP trees of maximum degree four, five or six.

This bound has been improved in 2006 by Barth and Fournier, who showed that the maximum degree
of AP trees is actually four, and that this bound is tight [2]. Their proof is based on the fact that, given
an AP tree T and one of its node v of degree d, the d-pode D(a1, . . . , ad), where the ai are the sizes of
the d components resulting from the deletion of v in T , is also AP. It is then proved that k-podes can
not be arbitrarily partitionable when k > 4, and, as a consequence, that AP trees can not have nodes of
degree more than four.

During their proof, Barth and Fournier found a constraint for AP trees for being of maximum degree
four: their degree four nodes must be adjacent to a leaf. Hence, “complex” AP trees are mainly composed

7A claw is a graph isomorphic to K1,3.
8A net is a triangle K3 whose vertices are each connected to a pendant vertex.
9PM is the set of graphs which have a perfect (or quasi-perfect) matching.

10A spanner of a graph G is a spanning subgraph of G.
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of degree three nodes. The number of such nodes in AP trees is not bounded: [2] provides a technique
for building an AP (α+ 1)-comb11 by extending an AP α-comb.

4 Open questions and perspectives

As arbitrarily partitionability is a rather recent concept, the studies done so far mainly aimed to give a
first global approach of it; that is why they were essentially focusing on the family of trees. Some more
complex structures are hence expected to be investigated: for instance, all the results known about the
different versions presented in section 2 principally concern trees. It now appears natural to extend our
researches to some more complicated structures to improve our knowledge of arbitrarily partitionability.

One also has to keep in mind that the work done so far on trees shall be improved as we discover new
techniques for proving things about arbitrarily partitionability. For example, the AP+k version recently
introduced will allow us to fix some “strategical vertices” into some particular parts of a sequence. Being
able to satisfy this need, which has been felt in many proofs, will certainly be helpful to simplify some
of these.

We have seen in section 3 that the study of AP trees was justified by the fact that adding them edges
is a good method to obtain a large number of other AP graphs. But this construction is not sufficient
enough to generate all AP graphs: there exists some AP graphs which do not contain an AP spanning
tree [9] [8]. Hence, some non-tree AP graphs can also be used as “starting points” for the construction.

From this, another interesting class of AP graphs is being studied. A graph is said to be minimal
arbitrarily partitionable (min-AP for short) if it is minimal for the property of being AP: removing any
edge from it makes it lose this property. The more min-AP graphs we shall find, the more AP graphs
we shall thus be able to product by adding them edges.

Apart from the characterization of min-AP trees, we still do not know much about min-AP graphs.
A very rough characterization of their maximum degree has been given by Ravaux [9], who proved that
if G = (V,E) is an min-AP graph, then it is of maximum degree at most |V | − 2. He also conjectured
that their number of edges is linear in their number of nodes, in other words that |E| = O(|V |).
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